MENINGKATKAN PEMAHAMAN SISWA YANG LEMAH
DALAM MENGKONVERSI SATUAN MATERI PENGUKURAN
DENGAN METODE DEMONSTRASI
Dosen Pengampu: Beni Asyhar, S.Si., M.Pd.
Puji Astuti
(2814123022)
Jurusan Tadris Matematika
Fakultas Tarbiyah Dan Ilmu Keguruan
Institut Agama Islam Negeri (IAIN) Tulungagung
ABSTRAK
Tugas ini dibuat bertujuan untuk mengetahui permasalahan-permasalahan yang terjadi saat pembelajaran matematika serta cara menyelesaikannya. Permasalahan yang diangkat disini adalah siswa lemah dalam mengkonversi satuan. Dan penyelesaian yang penulis ambil adalah dengan metode demonstrasi. Hasil pembahasan dari permasalahan di atas adalah 1) penyebab siswa lemah dalam mengkonversi satuan adalah siswa tidak hafal tangga satuan untuk pengukuran panjang dan berat, luas dan volume, siswa tidak hafal hubungan antar satuan waktu dan kuantitas, metode mengajar guru yang kurang menarik, sehingga siswa kurang termotivasi untuk belajar, siswa tidak paham konsep pengukuran, lingkungan belajar yang kurang mendukung; 2) Cara memahamkan siswa yang lemah dalam materi pengukuran khususnya dalam mengkonversi satuan adalah menggunakan metode hafalan yaitu dengan jembatan keledai lalu dilanjutkan dengan metode demonstrasi dalam mengajarkan materi pengukuran.
Kata kunci: Pemahaman Siswa, Konversi Satuan Pengukuran, Metode Demonstrasi
ABSTRACT
This task is made aims to know the problems that occur when learning mathematics and how to solve it . Issues raised here is the weak students in converting units . And completion of the authors take is the method of demonstration . The results of the discussion of the above problems are 1 ) the cause of the weak students in converting the students did not know the unit is a unit for measuring the length and weight , area and volume , the students do not know the relationship between units of time and quantity , methods of teaching teachers who are less attractive , so that students less motivated to learn , students do not understand the concept of measurement , less supportive learning environment ; 2 ) How to get the hang of students who are weak in the material , especially in converting units of measurement are using rote methods ie with mnemonics and then proceed with the demonstration method for teaching measurements .
Keywords : Understanding Students , Conversion Unit of Measurement , Methods Demonstration
PENDAHULUAN
Sampai saat ini belum ada kesepakatan yang bulat dari para matematikawan mengenai definisi matematika. Menurut Andi Hakim Nasution, istilah metamatika berasal dari kata Yunani, mathein atau manthenein yang berarti mempelajari. Sedangkan orang Arab menyebut matematika dengan ‘ilmu al-hisab yang berarti ilmu berhitung. Dalam Kamus Besar Bahasa Indonesia (KBBI), matematika didefinisikan sebagai ilmu tentang bilangan, hubungan antara bilangan dan prosedur operasional yang digunakan dalam penyelesaian masalah mengenai bilangan.[1] Paling mengemukakan bahwa matematika adalah suatu cara untuk menemukan jawaban terhadap masalah yang dihadapi manusia; suatu cara menggunakan informasi, menggunakan pengetahuan tentang bentuk dan ukuran, menggunakan pengetahuan tentang menghitung, dan yang paling penting adalah memikirkan dalam diri manusia itu sendiri dalam melihat dan menggunakan hubungan-hubungan.[2]
Matematika merupakan bahasa yang melambangkan serangkaian makna dari pernyataan yang ingin kita sampaikan. Sebagai bahasa, matematika memiliki kelebihan. Bahasa matematika memiliki makna yang “tunggal”, sehingga suatu kalimat metematika tidak dapat ditafsirkan bermacam-macam. Selain itu, matematika juga mengembangkan bahasa numerik yang memungkinkan untuk pengukuran secara kuantitatif. Matematika juga berfungsi sebagai alat berpkir. Jadi, sejak awal kehidupan manusia matematika itu merupakan alat bantu untuk mengatasi berbagai berbagai macam permasalahan yang terjadi dalam kehidupan bermasyarakat.[3] Karena manfaat matematika yang begitu banyak untuk kehidupan kita, maka matematika diajarkan pada setiap jenjang pendidikan. Dimulai dari jenjang pendidikan yang paling rendah sampai yang paling tinggi, semua membutuhkan matematika.
Menurut Ki Hajar Dewantara, pendidikan yaitu tuntutan di dalam hidup tumbuhnya anak-anak, adapun maksudnya, pendidikan yaitu menuntut segala kekuatan kodrat yang ada pada anak-anak itu, agar mereka sebagai manusia dan sebagai anggota masyarakat dapatlah mencapai keselamatan dan kebahagiaan yang setinggi-tingginya. Pendidikan merupakan suatu proses terhadap anak didik berlangsung terus sampai anak didik mencapai pribadi yang dewasa susila. Proses ini berlangsung dalam jangka waktu tertentu. Bila anak didik sudah mencapai pribadi dewasa susila, maka ia sepenuhnya mampu bertindak sendiri bagi kesejahteraan hidupnya dan masyarakatnya.[4] Menurut UU No. 20 tahun 2003 Tentang Sistem Pendidikan Nasional menjelaskan pendidikan adalah usaha sadar dan terencana untuk mewujudkan suasana belajar dan proses pembelajaran agar peserta didik secara aktif mengembangkan potensi dirinya untuk memiliki kekuatan spiritual kaegamaan, pengendalian diri, kepribadian, kecerdasan, akhlak mulia, serta ketrampilan yang diperlukan dirinya, masyarakat, bangsa dan negara.[5] Jadi pendidikan adalah sebuah proses untuk mengembangkan potensi diri menjadi lebih baik. Dengan pendidikan yang baik diharapkan seluruh peserta didik mampu memaksimalkan potensi dirinya dan dapat bermanfaat di kemudian hari.
Pendidikan sekolah adalah pendidikan yang diperoleh seseorang di sekolah secara teratur, sistematis, bertingkat, dan dengan mengikuti syarat-syarat yang jelas dan ketat. Sebagai lembaga pendidikan formal, sekolah yang lahir dan berkembang secara efektif dan efisien dari dan oleh serta masyarakat, merupakan perangkat yang berkewajiban memberikan pelayanan kepada masyarakat dalam mendidik warga negara.[6] Dengan pendidikan sekolah, diharapkan mampu membawa perubahan yang positif terhadap warga negaranya dalam meningkatkan kualitas hidup mereka di kemudian hari. Oleh karena itu, diterapkanlah wajib belajar bagi seluruh warga negara.
Matematika merupakan subjek penting dalam sistem pendidikan di seluruh dunia. Di Indonesia, sejak bangku SD sampai perguruan tinggi, bahkan sejak play grup atau sebelumnya, syarat penguasaan terhadap matematika jelas tidak bisa dikesampingkan.[7] Dalam kehidupan sehari-hari matematika selalu digunakan dalam segala hal. Oleh karena itu, di Indonesia matematika sudah diperkenalkan sejak usia dini. Pengenalan matematika sejak usia dini dimaksudkan agar anak dapat melaksanakan pendidikan dengan baik sampai jenjang perguruan tinggi.
Menurut UU No.20 Tahun 2003 Tentang Sistem Pendidikan Nasional pada BAB X Pasal 37 “kurikulum pendidikan dasar dan menengah wajib memuat mata pelajaran matematika”[8]. Cornelius mengemukakan perlunya belajar matematika karena matematika merupakan (1) sarana berpikir yang jelas dan logis, (2) sarana untuk memecahkan masalah kehidupan sehari-hari, (3) sarana mengenal pola-pola hubungan dan generalisasi pengalaman, (4) sarana untuk mengembangkan kreatvitas dan (5) sarana untuk meningkatkan kesadaran tentang perkembangan budaya. Itu membuktikan bahwa matematika memang harus ditanamkan sejak usia dini untuk memperkuat tiga elemen yaitu konsep, ketrampilan dan pemecahan masalah. [9] Kalau ketiga elemen tersebut sudah terbangun cukup kuat maka siswa tidak akan kesulitan untuk belajar matematika ketahap selanjutnya.
Sebagian besar siswa di semua jenjang pendidikan, menganggap bahwa matematika itu sulit apalagi kalau sudah menginjak SMP dan SMA. Hal ini dikarenakan peletakan dasar matematika ketika anak berada pada jenjang pendidikan SD kurang kuat. Jika konsep dasar yang di bangun pada jenjang SD kurang kuat maka tahap berikutnya akan menjadi masa masa sulit dan penuh perjuangan bagi siswa untuk belajar matematika.[10] Pembelajaran matematika haruslah diberikan secara tepat agar tidak menjadi momok bagi siswa. Guru harus pandai-pandai mengatur cara agara matematika iku disenangi oleh siswa.
Materi matematika di Sekolah Dasar itu bermacam-macam, sehingga sebagian siswanya mengalami kesulitan dalam mempelajarinya. Seperti halnya, materi pengukuran pada jenjang Sekolah Dasar kelas 4. Materi pengukuran terbagi menjadi beberapa bagian yaitu, pengukuran sudut, waktu, panjang, berat, luas, volume dan kuantitas. Tentang pengukuran panjang dan berat, seperti mengubah dari km ke m, mengubah dari kg ke ons dan lain sebagainya, sebagian siswanya masih kesulitan untuk menentukan kesetaraannya. Begitu pula dengan pengukuran luas dan volume, sebagian siswa masih lemah dalam menentukan kesetaraan antar satuannya. Hal itu bisa disebabkan oleh metode mengajar guru yang kurang menarik atau siswa yang malas untuk memahami dan mempelajari materi pengukuran sehingga siswa lemah dalam mengkonversi satuan.
Metode mengajar guru yang kurang tepat akan berpengaruh terhadap proses peneyerapan belajar siswa dan hasil belajar siswa. Pada materi ini, supaya anak tertarik mempelajari materi pengukuran, guru sebaiknya menggunakan metode demonstrasi. Metode demonstrasi adalah salah satu dari beberapa metode mengajar yang biasa digunakan oleh guru dalam proses pembelajaran. Dalam buku Proses Belajar Mengajar, metode demonstrasi sebagai metode mengajar adalah guru memperlihatkan kepada siswanya apa yang sedang diterangkannya.[11] Metode ini dapat digunakan pada jenjang Sekolah Dasar dikarenakan pada jenjang ini pengenalan matematika menggunakan benda konkret. Dalam buku Mathemagics urutan pengenalan matematika yang baik adalah belajar menggunakan benda konkret, belajar membuat bayangan di pikiran dan belajar menggunakan simbol/lambang. Benda kongkrit adalah benda yang dapat dilihat dan dipegang oleh siswa. Dengan adanya benda kongkrit tersebut diharapkan dapat membantu siswa dalam membentuk jalur informasi melalui pancainderanya kemudian disalurkan dan disimpan di otak anak dalam jangka waktu yang lama. [12] Dari pernyataan tersebut jelas bahwa anak pada jenjang sekolah dasar harus dikenalkan dulu belajar menggunakan benda konkret pada materi-materi tertentu.
Metode demonstrasi diterapkan dengan tujuan memahamkan siswa tentang kesetaraan antar satuan. Dengan demikian apa yang siswa lihat dan siswa pelajari dengan metode demostrasi dapat tetap melekat kuat di dalam otaknya. Dengan metode ini pula diharapkan siswa mampu memperkuat pemahaman dan hafalannya tentang konversi antar satuan sehingga siswa tidak kesulitan untuk mengerjakan soal-soal dan mendapatkan hasil belajar yang memuaskan.
KAJIAN TEORI
A. Hakikat matematika
1. Definisi matematika
Sampai saat ini belum ada definisi pasti mengenai apa itu matematika, karena banyaknya ahli yang mendefinisikan pengertian matematika. Berikut ini akan disajikan beberapa definisi matematika.
Matematika adalah bahasa khusus yang menggunakan angka-angka dan simbol-simbol untuk mempelajari hubungan antara kuantitas. [13] Kline mengemukakan, matematika merupakan bahasa simbolis dan ciri utamanya adalah penggunaan cara bernalar deduktif, tetapi juga tidak melupakan cara belajar induktif. Lerner, mengemukakan bahwa matematika di samping sebagai bahasa simbolis juga merupakan bahasa universal yang memungkinkan manusia memikirkan, mencatat dan mengomunikasikan ide mengenai elemen kuantitas. Paling mengemukakan bahwa matematika adalah suatu cara untuk menemukan jawaban terhadap masalah yang dihadapi manusia; suatu cara menggunakan informasi, menggunakan pengetahuan tentang bentuk dan ukuran, menggunakan pengetahuan tentang menghitung, dan yang paling penting adalah memikirkan dalam diri manusia itu sendiri dalam melihat dan menggunakan hubungan-hubungan.[14] Dalam kamus besar Bahasa Indonesia, matematika adalah ilmu tentang bilangan, hubungan antar bilangan dan prosedur operasional yang digunakan dalam penyelesaian masalah mengenai bilangan.
Dari beberapa definisi di atas, matematika itu adalah bahasa yang menggunakan angka dan simbol dalam materi tertentu. Dalam matematika juga diajarkan pada kita tentang bagaimana cara bernalar dari yang umum ke khusus maupun dari khusus ke umum. Cara bernalar seperti itu sering digunakan untuk pembuktian-pembuktian matematika secara prosedural.
Matematika merupakan alat bantu yang sangat efektif bagi manusia. Matematika digunakan sebagai alat bantu manusia untuk menyelesaikan masalah-masalah yang berkaitan dengan kehidupan sehari-hari. Masalah-masalah yang sering dihadapi seperti dalam perdagangan, pengukuran dan masih banyak yang lainnya. Dengan matematika masalah seperti di atas dapat diselesaikan dengan tepat.
2. Karakteristik matematika
Berbicara tentang matematika, pasti akan membuat kita tertarik untuk mengetahui karakteristik apa yang ada dalam matematika. Untuk itu, ada beberapa karakteristik dari matematika yang perlu kita ketahui, diantaranya:[15]
a. Matematika memiliki kajian objek yang abstrak.
b. Bertumpu pada kesepakatan.
c. Berpola pikir deduktif.
d. Memperhatikan semesta pembicaraan
Matematika memiliki kajian objek yang abstrak yaitu meliputi fakta, prinsip, konsep dan operasi. Kajian objek tersebut kesemuanya harus dipelajari oleh siswa. Matematika juga bertumpu pada kesepakatan. Kesepakatan merupakan suatu hal penting karena merupakan awal dari belajar matematika seperti kesepakatan pengunaan symbol, bahasa dan lain sebagainya. Matematika juga menerapkan pola pikir yang deduktif. Yaitu dari hal-hal yang umum kemudian diterapkan ke hal yang kusus. Matematika juga sangat memperhatikan semesta pembicaraan, karena itu nanti akan mempengaruhi makna dari suatu hal.
3. Pembelajaran matematika di sekolah
Pendidikan dasar bagi generasi muda merupakan tahapan penting dalam menanamkan nilai-nilai fundamental dalam kehidupan. Pendidikan dasar menjadi peletak dasar mengenai cara berpikir, bersikap serta berperilaku manusia dalam menjalani hidup. Proses menjadi manusia seutuhnya dan berkarakter membutuhkan proses panjang dan waktu yang lama. Salah satu terpenting dalam menumbuhkan manusia berkarakter adalah kegiatan pembelajaran. Pembelajaran tidak sekedar mengandalkan pada kecakapan akademik yang tergambar dari bagaimana siswa tersebut bisa menulis, membaca, menggambar, menghitung dal sebagainya tetapi juga yang mampu memberikan makna dan nilai pada perkembangan jiwa dan emosional siswa. Disinilah letak strategis pembelajaran.[16]
Pembelajaran merupakan aktivitas yang dilakukan oleh seseorang baik guru/dosen (pendidik), tutor maupun fasilitator agar peserta didik dapat belajar.[17] Dengan adanya pembelajaran yang baik dan menarik diharapkan terjadi komunikasi dua arah yang efektif antara guru dengan murid. Sehingga akan didapatkan hasil belajar yang maksimal oleh peserta didik.
Matematika diajarkan dari jenjang pendidikan Taman Kanak-Kanak bahkan sampai Perguruan Tinggi. Bidang studi matematika yang diajarkan di SD mencakup tiga cabang, yaitu aritmatika, aljabar dan geometri. Menurut Dali S. Naga aritmatika atau berhitung adalah cabang matematika yang berkenaan dengan sifat hubungan-hubungan bilangan-bilangan nyata dengan perhitungan, terutama menyangkut penjumlahan, pengurangan, perkalian, pembagian. Dalam perkembangan aritmatika selanjutnya, penggunaan bilangan sering diganti dengan abjad. Penggunaan abjad inilah yang kemudian disebut aljabar. Aljabar tidak hanya menggnakan abjad sebagai lambang bilangan tetapi juga lambang-lambang lain seperti lebih besar (>), lebih kecil (<) dan sebagainya. Geometri adalah cabang matematika yang berkenaan dengan titik dan garis.[18]
Matematika yang diajarkan di jenjang SD, harus bisa dikuasai secara baik oleh seluruh siswa. Hal ini dikarenakan tiga cabang yang harus dipelajari di SD akan menjadi dasar untuk belajar matematika pada jenjang pendidikan selanjutnya. Jika siswa sudah menguasainya, maka akan cukup mudah bagi siswa tersebut untuk belajar matematika pada tahap selanjutnya. Ada beberapa alasan mengapa matematika harus diajarkan pada setiap jenjang pendidikan.
Cockroft mengemukakan bahwa matematika perlu diajarkan kepada siswa karena (1) selalu digunakan dalam segala segi kehidupan, (2) semua bidang studi memerlukan keterampilan matematika yang sesuai, (3) merupakan sarana komunikasi yang kuat, singkat, dan jelas, (4) dapat digunakan untuk menyajikan informasi dalam berbagai cara, (5) meningkatkan kemampuan berpikir logis, ketelitian dan kesadaran keruangan, (6) memberikan kepuasan terhadap usaha memecahkan masalah yang menantang.[19] Lerner mengemukakan bahwa kurikulum bidang studi matematika hendaknya mencakup tiga elemen yaitu konsep, keterampilan dan pemecahan masalah. Konsep menunjuk pada pemahaman dasar. Keterampilan menunjuk pada sesuatu yang dilakukan oleh seseorang. Pemecahan masalah adalah aplikasi dari konsep dan keterampilan.[20]
Dari kesemua pendapat diatas, siswa harus dapat menguasai ketiga elemen yaitu konsep, keterampilan dan pemecahan masalah. Karena dengan menguasai itu, maka siswa dapat lebih mudah dalam mempelajari matematika.
B. Pemahaman konsep
Pelajaran matematika sangat membutuhkan yang namanya pemahaman konsep dari suatu materi. Berikut ini tentang beberapa pengertian pemahaman konsep dari beberapa sumber. Menurut Purwanto pemahaman adalah tingkat kemampuan yang mengharapkan siswa mampu memahami arti atau konsep, situasi serta fakta yang diketahuinya.[21] Mulyasa juga mengemukakan bahwa pemahaman adalah kedalaman kognitif dan afektif yang dimiliki oleh individu.[22] Dari pendapat di atas, dapat ditarik kesimpulan bahwa pemahaman adalah kemampuan siswa dalam memahami akan sesuatu hal.
Dalam taksonomi Bloom, tipe hasil belajar kognitif pada pemahaman di bedakan menjadi tiga, yaitu: [23]
1. Translasi, kemampuan untuk mengubah simbol tertentu unyk menjadi simbol lain tanpa perubahan makna.
2. Interpretasi, kemampuan untuk menjelaskan makna yang terdapat dalam simbol, baik simbol verbal maupun simbol non verbal. Kemampuan untuk menjelaskan konsep atua prinsip atau teori tertentu termasuk dalam kategori ini.
3. Ekstrapolasi, kemampuan untuk melihat kecenderungan atau arah atau kelanjuan dari suatu temuan.
Menurut Departemen Pendidikan Nasional konsep dapat diartikan sebagai ide abstak yang dapat digunakan untuk menggolongkan sekumpulan objek.[24] Pemahaman konsep merupakan salah satu kecakapan atau kemahiran matematika yang diharapkan dapat tercapai dalam belajar matematika yaitu dengan menunjukkan pemahaman konsep matematika yang dipelajarinya, menjelaskan keterkaitan antar konsep dan mengaplikasikan konsep atau algoritma secara luwes, akurat, efisien, dan tepat dalam pemecahan masalah.[25] Dari beberapa pendapat di atas dapat disimpulkan bahwa pemahaman konsep adalah suatu kemampuan yang harus dimiliki siswa dalam mengemukakan dan memahami lmu yang dipelajarinya.
C. Kesulitan belajar matematika
1. Pengertian kesulitan belajar
Kesulitan belajar merupakan suatu kondisi dimana kompetensi atau prestasi yang dicapai tidak sesuai dengan kriteria standar yang telah ditetapkan, baik berbentuk sikap, pengetahuan maupun keterampilan. Berikut ini beberapa definisi mengenai kesulitan belajar yang dijelaskan dalam kurikulum pendidikan nasional. Hammill, et al. mengemukakan bahwa kesulitan belajar adalah beragam bentuk kesulitan yang nyata dalam aktivitas mendengarkan, bercakap-cakap, membaca, menulis, menalar, dan atau dalam berhitung. Gangguan tersebut dapat berupa gangguan internal dan eksternal. NJCLD (National Join Committee of Learning Disabilities) dalam Lerner. Kesulitan belajar adalah istilah umum untuk berbagai jenis kesulitan dalam menyimak, berbicara, membaca, menulis, dan berhitung. Kondisi ini bukan karena kecacatan fisik atau mental, bukan juga karena pengaruh faktor lingkungan, melainkan karena faktor kesulitan dari dalam individu itu sendiri saat mempersepsi dan melakukan pemrosesan informasi terhadap objek yang diinderanya.
Menurut beberapa pakar pendidikan, seperti Dalyono menjelaskan kesulitan belajar merupakan suatu keadaan yang menyebabkan siswa tidak dapat belajar sebagaimana mestinya. Menurut Sabri, kesulitan belajar identik dengan kesukaran siswa dalam menerima atau menyerap pelajaran di sekolah.[26] Jadi kesulitan belajar dapat diartikan sebagai suatu hambatan yang terjadi dalam proses pembelajaran, sehingga siswa sulit memahami apa ynag diajarkan oleh guru.
2. Faktor penyebab kesulitan belajar
Kesulitan beajar pasti dialami oleh setiap siswa yang menempuh pendidikan. Kesulitan itu bisa berpengaruh pada hasil belajar yang akan didapat oleh siswa. Oleh karena itu, akan penulis terangkan mengenai penyebab kesulitan belajar pada anak. Kesulitan belajar pada anak bahwa faktor utama yang mempengaruhinya adalah berasal dari dalam diri anak sendiri (internal). Anak mengalami gangguan secara internal seperti gangguan pemusatan perhatian dan hiperaktivitas (GPPH).
Ciri-ciri anak yang sulit memusatkan perhatian biasanya ceroboh, sulit berkonsentrasi seperti tidak mendengarkan bila diajak bicara, gagal menyelesaikan tugas, sulit mengatur aktivitas, menghindari tugas yang memerlukan pemikiran, perhatian mudah teralih dan pelupa. Untuk anak usia sekolah, saat menyimak pelajaran yang diberikan guru, anak dengan gangguan pemusatan perhatian tidak dapat mengerti apa yang diterangkan guru.
Ciri-ciri dari hiperaktivitas adalah terus menerus bergerak, memainkan jari atau kaki saat duduk, sulit duduk diam dalam waktu yang lama, berbicara berlebihan dan senang mengganggu orang lain. Adapun gangguan pemusatan perhatian ini disebabkanoleh beberapa hal antara lain:
a) Adanya kelainan anatomis, terutama pada otak besar bagian depan.
b) Gangguan neurotransmitter sebagai akibat dari penggunaan berbagai obat kimia.
c) Faktor genetik.
d) Adanya kelainan fungsi inhibisi perilaku dan kontrol diri.
e) Gangguan integrasi sensorik dan persepsi.
f) Gaya hidup yang tidak sehat.
g) Pola kehidupan yang tidak disiplin.
Oleh karena itu, bukan hanya faktor luar yang menyebabkan anak kesulitan belajar namun dari dalam individu itu sendiri yang paling utama.[27]
3. Dampak kesulitan belajar
Kesulitan belajar pasti akan memberikan pengaruh yang sangat luar biasa pada peserta didik. Berikut ini berbagai dampak yang mungkin menyertai kesulitan belajar pada anak.[28]
a) Pertumbuhan dan perkembangan anak terhambat.
b) Interkasi anak dengan lingkungan terganggu.
c) Anak menjadi frustasi.
d) Anak menjadi tidak percaya diri.
e) Anak akan kesulitan berinteraksi dengan teman-temannya.
f) Ketidakharmonisan dalam keluarga.
Kesulitan belajar pastinya akan memberikan dampak yang cukup besar bagi siswa maupun orang-orang yang ada disekitarnya. Seperti anak akan dikucilkan dari pergaulannya, tidak percaya diri dan lain sebagainya. Tentunya hal ini akan sangat menyusahkan interaksi anak tersebut terhadap lingkungan sekitarnya.
D. Hakikat metode demonstrasi
1. Pengertian metode demonstrasi
Metode pembelajaran didefinisikan sebagai cara yang digunakan oleh guru dalam menjalankan fungsinya dan merupakan alat untuk mencapai tujuan pembelajaran.[29]Ada banyak metode yang dipergunakan guru dalam proses pembelajaran di kelas. Dalam praktiknya guru harus pandai-pandai memadukan metode pembelajaran dengan materi yang akan disampaikan. Salah satu metode yang dapat digunakan oleh guru adalah metode demonstrasi. [30]
Metode demonstrasi adalah suatu metode mengajar dengan jalan guru atau orang lain (yang sengaja diminta) atau siswa sendiri memperlihatkan atau mempertunjukkan gerakan-gerakan atau proses dengan prosedur yang benar disertai dengan keterangan-keterangan kepada seluruh kelas.[31] Metode demonstrasi adalah cara mengajar dimana guru menunjukkan, memperlihatkan sesuatu proses, sehingga seluruh siswa dalam kelas dapat melihat, mengamati, mendengar mungkin meraba dan merasakan proses yang dipertunjukkan oleh guru tersebut.[32] Demonstrasi berarti pertunjukan, maksudnya di dalam pembelajaran guru dengan menunjukkan apa yang sedang diterangkan.[33]
Dari bebeapa pengertian diatas, demonstrasi dapat diartikan sebagai suatu pertunjukkan yang diperlihatkan kepada siswa tentang apa yang dijelaskan atau yang sedang diperagakan oleh guru dengan disertai penjelasan-penjelasan secara lisan maupun tulisan. Dalam penggunaan metode demonstrasi, ada dua teknik yang biasanya digunakan. Yang pertama, guru hanya memeragakan dan memperlihatkannya kepada siswa, sedangkan siswanya hanya menonton saja atau pasif. Yang kedua, guru memeragakan dan memperlihatkannya kepada siswa, namun siswa disuruh mengulang kembali atau mencoba memeragakan alat peraga itu sendiri. Dengan penggunaan teknik yang berbeda maka hasilnyapun juga akan berbeda.
2. Langkah-langkah metode demonstrasi
Ada beberapa langkah yang digunakan dalam metode demonstrasi. Adapun langkah-langkahnya sebagai berikut:[34]
a. Merumuskan dengan jelas kecakapan atau ketrampilan apa yang diperoleh setelah demonstrasi dilakukan.
b. Tentukan peralatan yang digunakan, kemudian dicoba dahulu agar dalam pelaksanaan demonstrasi tidak mengalami kegagalan.
c. Menetapkan prosedur yang dilakukan dan sebelum demonstrasi dilakukan perlu diadakan percobaan terlebih dahulu.
d. Menentukan lama pelaksanaan demonstrasi.
e. Memberikan kesempatan kepada siswa untuk memberi komentar pada saat maupun sesudah demonstrasi.
f. Meminta kepada siswa untuk mencatat hal-hal yang dianggap perlu.
g. Menetapkan rencana untuk menilai kemajuan siswa.
Hal-hal di atas harus benar-benar diperhatikan oleh guru dalam melakukan demonstrasi. Hal ini dikarenakan terkait dengan tujuan pembelajaran yang guru gunakan berhasil atau tidak. Persiapan yang lebih matang juga harus dilakukan oleh guru, agar dapat menampilkan yang terbaik dan siswa dapat memahami apa yang dipertunjukkan oleh guru.
3. Kelebihan dan kelemahan metode demonstrasi
a. Kelebihan metode demonstrasi
Penggunaan teknik demonstrasi sangat menunjang proses interaksi belajar mengajar di kelas. Adapun kelebihan metode demonstrasi sebagai berikut:[35]
1) Dengan metode demonstrasi perhatian siswa lebih dapat terpusatkan pada pelajaran yang sedang diberikan.
2) Kesalahan-kesalahan yang terjadi bila pelajaran itu diceramahkan dapat diatasi melalui pengamatan dan contoh kongkrit.
3) Memberikan kesan yang mendalam kepada siswa.
4) Memberikan motivasi kepada siswa untuk belajar lebih giat.
5) Siswa dapat berpartisipasi secara aktif, memperoleh pengalaman secara langsung dan dapat mengembangkan kecakapannya.
b. Kelemahan metode demonstrasi
Walaupun telah disebutkan beberapa kelebihan metode demonstrasi, namun sebuah metode tidak selalu sempurna. Berikut ini beberapa kelemahan dari metode demonstrasi:[36]
1) Bila alatnya kecil atau penempatan yang kurang tepat menyebabkan demonstrasi tidak dapat dilihat dengan jelas oleh siswa.
2) Jika tidak melibatkan siswa dalam proses demonstrasi maka materi yang disampaikan biasanya kurang dipahami oleh siswa.
3) Memerlukan biaya untuk membuat alat demonstrasi.
E. Materi Pengukuran
Materi pengukuran sudah dikenalkan sejak jenjang Sekolah Dasar. Materi tersebut dikenalkan sejak Sekolah Dasar. Dimulai dari pengukuran menggunakan satuan tidak baku sampai ke satuan yang baku, dari yang sederhana ke yang lebih kompleks. Hal tersebut pastinya memerlukan proses yang tidak sebentar, harus dilakukan secara bertahap dan harus dilatih secara terus menerus sampai anak mahir.
Pengukuran adalah satu dari yang paling luas digunakan aplikasinya dalam matematika dan menjembatani dua hal/materi utama dalam matematika sekolah yaitu geometri dan bilangan.[37] Materi pengukuran yang dipelajari diantaranya adalah pengukuran panjang, berat, luas, volume, kuantitas, waktu, suhu dan sudut.[38] Dari kesemua materi pengukuran tersebut, penulis akan membahas tentang satuan waktu, satuan panjang, satuan berat, satuan kuantitas, luas, dan volume. Dalam topik tersebut akan dibahas mengenai hubungan antar satuan maktu, hubungan antar satuan panjang, hubungan antar satuan berat, satuan kuantitas dan hubungannya. Berikut ini akan dibahas sekilas mengenai topik di atas.
1. Satuan Waktu
Berbicara mengenai satuan waktu tentunya tidak lepas dari kehidupan sehari-hari. Setiap hari kita selalu berhubungan dengan waktu apabila beraktifitas. Berikut ini adalah hubungan antar satuan waktu yang hiasa kita jumpai dalam kehidupan sehari-hari.[39]
1 abad = 100 tahun
1 dasawarsa = 10 tahun
1 windu = 8 tahun
1 lustrum = 5 tahun
1 tahun = 12 bulan
1 tahun = 52 minggu
1 tahun = 365 hari
1 tahun = 2 semester
1 tahun 3 catur wulan.
|
1 semester = 6 bulan
1 catur wulan = 4 bulan
1 bulan = 30 hari
1 bulan = 4 minggu
1 minggu = 7 hari
1 hari = 24 jam
1 jam = 60 menit
1 menit = 60 detik
|
2. Satuan Panjang
Ada dua macam satuan ukuran panjang yaitu:[40]
a. Satuan ukur panjang tidak baku
Misalnya: jengkal, hasta, depa, langkah dan lengan. Satuan ukur ini tidak lazim digunakan karena sifatnya berubah-ubah. Namun dalam masyarakat tradisional pengukuran dengan satuan tidak baku masih digunakan.
b. Satuan ukur panjang baku
Satuan ukur ini ditetapkan melalui perjanjian internasional dan sifatnya tetap. Satuan ukuran panjang baku standar internasional adalah kilometer (km), hektometer (hm), dekameter (dam), meter (m), desimeter (dm), sentimeter (cm), dan milimeter (mm). Untuk satuan ukuran panjang setiap turun 1 tingkat kebawah dikalikan dengan 10, turun 2 tingkat dikalikan 100 dan seterusnya. Jika naik 1 tingkat ke atas dibagi dengan 10, naik 2 tingkat dibagi 100 dan seterusnya.
3. Satuan Berat
Satuan berat sangat sering digunakan dalam kehidupan sehari-hari, seperti menimbang gula, berat badan dan lain sebagainya. Ukuran berat yang biasa dipakai antara lain kilogram, ons, gram dan lain-lain. Sedangkan alat untuk mengukur berat benda adalah timbangan.[41] Untuk satuan ukuran panjang setiap turun 1 tingkat kebawah dikalikan dengan 10, turun 2 tingkat dikalikan 100 dan seterusnya. Jika naik 1 tingkat ke atas dibagi dengan 10, naik 2 tingkat dibagi 100 dan seterusnya.
4. Satuan Kuantitas
Satuan kuantitas digunakan untuk menyatakan jumlah benda. Berikut ini adalah hubungan antarsatuan kuantitas:[42]
1 lusin = 12 buah
1 gros = 12 lusin
1 gros = 144 buah
1 kodi = 20 lembar
1 rim = 500 lembar
5. Satuan Luas
Satuan ukuran luas hampir mirip dengan satuan ukuran panjang. Dalam satuan luas ada penambahan tentang pangkat 2. Jadi satuan ukuran luas adalah
,
,
,
,
,
,
. Untuk satuan ukuran luas setiap turun 1 tingkat kebawah dikalikan dengan 100, turun 2 tingkat dikalikan 10000 dan seterusnya. Jika naik 1 tingkat ke atas dibagi dengan 100, naik 2 tingkat dibagi 10000 dan seterusnya.[43]







6. Satuan Volume
Satuan ukuran volume hampir sama dengan ukuran panjang. Dalam satuan volume ada penambahan pangkat 3. Jadi satuan ukuran volume adalah
,
,
,
,
,
,
. Untuk satuan ukuran volume setiap turun 1 tingkat kebawah dikalikan dengan 1000, turun 2 tingkat dikalikan 1000000 dan seterusnya. Jika naik 1 tingkat ke atas dibagi dengan 1000, naik 2 tingkat dibagi 1000000 dan seterusnya.[44]







PEMBAHASAN
A. Penyebab siswa lemah dalam mengkonversi satuan
Berbicara tentang materi pengukuran, pastinya sudah terbayang dengan materi yang banyak dan harus meghafalkan. Oleh karena itu, sebagian siswa merasa kesulitan untuk belajar pengukuran. Dibawah ini ada beberapa penyebab siswa lemah dalam materi pengukuran, khususnya untuk mengkonversi satuan.
Faktor yang dapat menyebabkan siswa lemah dalam mengkonversi satuan antara lain:
1. Siswa tidak hafal tangga satuan untuk pengukuran panjang dan berat, luas dan volume.
Sebelum menginjak materi pengukuran dengan tangga satuan, siswa diajak menghafal tangga satuan terlebih dahulu. Siswa yang tidak hafal tangga satuan dapat disebabkan karena cara menghafalnya yang tidak menarik, sehingga tidak tersimpan kuat di memori siswa. Bisa disebabkan juga daya ingat siswa yang tidak kuat sehingga perlu dilakukan penghafalan yang berulang-ulang.
2. Siswa tidak hafal hubungan antar satuan waktu dan kuantitas.
Seperti halnya dengan menghafal tangga satuan panjang dan berat, satuan waktu dan kuantitas pun perlu dihafalkan. Agar hafalannya melekat kuat di ingatan siswa maka haruslah digunakan cara mengahafal yang menarik.
3. Metode mengajar guru yang kurang menarik, sehingga siswa kurang termotivasi untuk belajar.
Proses belajar mengajar memanglah hal yang menarik untuk diperbincangkan. Terutama dalam hal mengajar siswa. Cara guru mengajar merupakan salah satu penentu keberhasilan pembelajaran di kelas. Cara mengajar guru haruslah menarik perhatian siswa agar siswa termotivasi untuk belajar. Sehingga sebagai seorang pendidik haruslah mampu menciptakan suasana kelas yang menyenangkan dan kondusif.
4. Siswa tidak paham konsep pengukuran.
Permasalahan lain yang sering timbul adalah siswa tidak paham konsep pengukuran. Hal tersebut dapat terjadi karena metode mengajar guru yang kurang menarik dan kurang baik, siswa yang kurang memperhatikan penjelasan guru. Jika penjelasan awal sudah tidak paham maka untuk mengikuti materi selanjutnya pun akan kesulitan.
5. Lingkungan belajar yang kurang mendukung.
Lingkungan belajar merupakan salah satu hal yang mempengaruhi siswa dalam belajar. Lingkungan belajar yang kurang mendukung akan menghambat proses belajar mengajar di kelas dan hasilnya tidak akan maksimal.
Selain faktor di atas, menurut Annisa Novita Dewi penyebab siswa lemah mengkonversi satuan kususnya satuan panjang adalah siswa tidak hafal tangga satuan panjang sehingga urutan yang dihafal itu terbalik-balik.[45] Ketika seorang siswa tidak hafal satuan panjang maka dia tidak akan bisa mengerjakan soal tentang mengkonversi satuan dengan benar. Disisi lain, selain siswa tidak hafal dengan tangga satuan, siswa juga lemah dalam operasi bilangan bulat kususnya pada perkalian dan pembagian.
Oleh karena itu, sebagai guru harus dapat berpikir kreatif. Hal ini dimaksudkan, untuk menggugah minat siswa agar termotivasi untuk lebih giat belajar tentang materi pengukuran. Sebab, materi pengukuran itu sangat penting dan akan selalu digunakan dalam kehidupan sehari-hari.
B. Cara memahamkan siswa yang lemah dalam materi pengukuran khususnya dalam mengkonversi satuan.
Terdapat beberapa permasalahan yang terjadi dalam pembelajaran materi pengukuran seperti yang diterangkan pada poin sebelumnya. Tentunya akan banyak sekali hal-hal yang kita pikirkan bagaimana caranya siswa itu dapat belajar dengan baik dan memahami materi apa yang kita sampaikan. Pada pemabahasan kali ini penulis akan menjelaskan bagaimana memahamkan siswa yang lemah dalam mengkonversi satuan. Yaitu dengan menggunakan metode demonstrasi.
Namun sebelum mempraktekkan metode tersebut langkah pertama yang harus guru ambil adalah mengajak siswa untuk menghafal tangga satuan terlebih dahulu. Untuk menghafal tersebut, guru dapat memanfaatkan “jembatan keledai” yaitu mengaitkan suatu kata dengan kata lain, menghubungkan satu satuan dengan suatu kata yang hampir mirip. Sehingga dapat menimbulkan kesan yang mendalam bagi siswa dan dapat diingat dengan mudah. Langkah-langkahnya adalah sebagai berikut:[46]
1. Ketika pembelajaran tentang pengukuran dimulai. Guru menuliskan kata-kata sebagai berikut: Kami – Hampir – Demam – Makan - Durian mentah – Sama – Mangga mentah.
2. Biarkan dulu siswa bereaksi dan berkomentar, tetapi guru harus pandai merebut perhatian siswa agar tetap focus ke papan tulis.
3. Guru meminta kepada siswa untuk membaca bersama-sama beberapa kali kemudian menghafalkannya.
4. Setelah mulai hafal guru menjelaskan maksud dari kata-kata yang mereka hafal.
Kami = km (kilometer)
Hampir = hm (hectometer)
Demam = dam (dekameter)
Makan = m (meter)
Durian mentah = dm (desimeter)
Sama = cm (sentimeter)
Mangga mentah = mm (millimeter)
5. Setelah siswa dirasa mampu menghafalnya, maka guru membawa siswa untuk mempelajarinya materi ini dengan metode demonstrasi.
Demonstrasi yang ditampilkan nanti berupa alat peraga tangga satuan untuk pengukuran panjang, berat, luas dan volume serta papan Waktu dan Kuantitas. Alat peraga tersebut dibuat semenarik mungkin agar siswa merasa senang dalam belajar.
1. Satuan Waktu
Satuan waktu erat kaitanya dengan kehidupan sehari-hari. Dengan pengunaan metode demonstrasi maka satuan waktu dapat di buat papan untuk dipertunjukkan kepada siswa.
![]() |
Penggunaannya, guru dapat menunjukkan didepan kelas sambil menerangkan tentang fungsi dari papan tersebut. Pada tangga satuan waktu tiap turun 1 tangga maka dikali dengan 60. Jika turun 2 tangga maka dikali dengan 60x60 = 3600. Jika naik 1 tangga maka dibagi dengan 60, jika naik 2 tangga maka dibagi dengan 3600. Untuk kesetaraan antar satuan waktu yang lain, guru dapat menggunakan papan tempel untuk menerangkannya. Guru menerangkan tantang isi dari papan tempel tersebut kemudian menyuruh siswa untuk menulisnya dibuku. Setelah itu guru melepas papan tempel tersebut dan meminta siswa untuk mencoba-coba memasangkan kertas yang berisi tulisan-tulisan waktu kemudian di tempelkan ke papan yang telah disediakan.
Hal ini dimaksudkan agar apa yang dipelajari siswa tadinya dapat tertanam kuat di ingatan siswa. Setelah selesai, maka tugas guru untuk menjelaskan dan meluruskan hasil percobaan siswa yang masih belum benar. Untuk lebih memantapkannya guru memberikan beberapa soal untuk dikerjakan siswa. Hal ini bertujuan untuk mengukur seberapa jauh pemahaman siswa tentang materi yang telah disampaikan.Dengan begitu maka diharapkan siswa dapat paham tentang kesetaraan antar satuan waktu.
2. Satuan Panjang
Setelah menghafal satuan panjang maka siswa diajarkan satuan panjang melalui metode demonstrasi, yaitu menggunakan tangga satuan. Diharapkan dengan metode ini anak dapat lebih paham tentang satuan panjang. Dengan ketentuan jika turun 1 tangga maka dikali dengan 10, jika turun 2 tangga maka dikali dengan 10 x 10 =100 dan seterusnya. Jika naik 1 tangga maka dibagi dengan 10, naik 2 tangga dibagi dengan 100 dan seterusnya.
Km
| ||||||
Hm
| ||||||
Dam
| ||||||
M
| ||||||
Dm
| ||||||
Cm
| ||||||
Mm
|
Misalkan, guru akan mencari kesetaraan satuan dari 1 km ke m. Caranya, dari km kita hitung turun berapa tangga ke m. Ternyata dari km ke m itu turun 3 tangga. Sehingga turun 3x itu dapat ditulis dengan 10 x 10 x 10=1000. Dapat disimpulkan 1 km = 1000 m. Begitu pula ketika kita mencari 1 m itu sama dengan berapa hm? Guru dapat menjelaskan kepada siswa dari m ke hm itu naik tangga sebanyak 2x. Yang berarti kalau naik itu dibagi dengan 10 x 10 = 100. Jadi 1 m = 1 : 100 = 0,01 hm.
3. Satuan Berat
Cara mencari kesetaran antar satuan berat tidak jauh berbeda dengan cara mencari kesetaraan antar satuan panjang. Dengan ketentuan yang sama dengan pengukuran panjang. Jika turun 1 tangga maka dikali dengan 10, jika turun 2 tangga maka dikali dengan 10 x 10 =100 dan seterusnya. Jika naik 1 tangga maka dibagi dengan 10, naik 2 tangga dibagi dengan 100 dan seterusnya.
Kg
| ||||||
Hg
| ||||||
Dag
| ||||||
G
| ||||||
Dg
| ||||||
Cg
| ||||||
Mg
|
Misalkan, guru akan mencari kesetaraan satuan dari 1 Kg ke g. Caranya, dari Kg kita hitung turun berapa tangga ke g. Ternyata dari Kg ke g itu turun 3 tangga. Sehingga turun 3x itu dapat ditulis dengan 10 x 10 x 10=1000. Dapat disimpulkan 1 kg = 1000 g. Begitu pula ketika kita mencari 1 g itu sama dengan berapa Kg? Guru dapat menjelaskan kepada siswa dari g ke kg itu naik tangga sebanyak 3x. Yang berarti kalau naik itu dibagi dengan 10 x 10 x 10 = 1000. Jadi 1 g = 1 : 1000 = 0,001 kg.
4. Satuan Kuantitas
![]() |
Satuan kuantitas dapat diterangkan guru dengan metode demonstrasi. Misalnya, guru memberikan pertanyaan kepada siswa, 1 lusin itu sama dengan berapa buah? Untuk menjawab pertanyaan tersebut maka guru menyediakan kertas tempel yang berisi tulisan-tulisan hubungan kesetaraan antar satuan kuantitas. Dengan begitu akan ada interaksi antar guru dengan siswa dalam proses demonstrasinya. Guru member pertanyaan kemudian murid menjawab dan guru menempelkan jawaban-jawaban siswa tersebut pada papan satuan Kuantitas. Untuk selanjutnya guru menerangkan hasil tempelan-tempelan siswa tersebut dan meluruskannya jika ada kesalahan.
5. Satuan Luas
Cara mencari kesetaraan antar sautuan luas tidak jauh berbeda dengan cara mencari kesetaraan antar satuan panjang. Yang membedakan adalah jika pada satuan panjang tiap turun 1x dikali dengan 10 maka untuk satuan luas tiap turun 1x dikali dengan 102 = 10 x 10 = 100. Jika naik 1x maka dibagi dengan 100.
Km2
| ||||||
Hm2
| ||||||
Dam2
| ||||||
M2
| ||||||
Dm2
| ||||||
Cm2
| ||||||
Mm2
|
Misalkan, guru akan mencari kesetaraan satuan dari 1 Km2 ke Dam2. Caranya, dari Km2 kita hitung turun berapa tangga ke Dam2. Ternyata dari Km2 ke Dam2 itu turun 2 tangga. Sehingga turun 2x itu dapat ditulis dengan 102 x 102=100 x 100 = 10000. Jadi dapat disimpulkan 1 km2 = 10000 dam2. Begitu pula ketika kita mencari 1 m2 itu sama dengan berapa hm? Guru dapat menjelaskan kepada siswa dari m2 ke hm2 itu naik tangga sebanyak 2x. Yang berarti kalau naik itu dibagi dengan 102 x 102 = 100 x 100 = 10000. Jadi 1 m2 = 1 : 10000 = 0,0001 hm2.
6. Satuan Volume
Cara mencari kesetaraan antar sautuan volume tidak jauh berbeda dengan cara mencari kesetaraan antar satuan panjang dan satuan luas. Yang membedakan adalah jika pada satuan panjang tiap turun 1x dikali dengan 10 , untuk satuan luas tiap turun 1x dikali dengan 102=100 sedangkan untuk satuan volume tiap turun 1x dikali dengan 103=1000. Jika naik 1x maka dibagi dengan 1000.
Km3
| ||||||
Hm3
| ||||||
Dam3
| ||||||
M3
| ||||||
Dm3
| ||||||
Cm3
| ||||||
Mm3
|
Contohnya untuk mencari kesetaraan satuan dari 1 km3 ke dam3. Dengan cara yang sama seperti mencari kesetaraan antar satuan panjang maupun luas, dihitung turun berapa kali dari km3 ke dam3 itu. Ternyata dari km3 ke dam3 itu turun tangga sebanyak 2x. Sehingga dapat ditulis 103 x 103 = 1000 x 1000 = 1000000. Jadi 1 km3 = 1000000 dam3. Begitu pula ketika mencari kesetaraan satuan dari 1 dm3 ke m3. Guru dapat menjelaskan dari dm3 ke m3 naik tangga sebanyak 1x. Sehingga dapat ditulis 103 = 1000. Jadi 1 dm3 = 1 : 1000 = 0,001 m3.
Setelah proses demonstrasi selesai guru memberikan soal agar siswa dapat memperdalam pemahamannya. Diharapkan dengan metode demonstrasi seperti ini siswa akan lebih paham bagaimana caranya mengkonversi satuan. Sehingga siswa tidak akan mengalami kesulitan yang cukup berarti dalam mengerjakan soal-soal dalam pengukuran.
PENUTUP
A. Kesimpulan
Dari uraian pembahasan diatas dapat ditarik kesimpulan bahwa:
1. Penyebab siswa lemah dalam mengkonversi satuan adalah sebagai berikut:
a. Siswa tidak hafal tangga satuan untuk pengukuran panjang dan berat, luas dan volume.
b. Siswa tidak hafal hubungan antar satuan waktu dan kuantitas.
c. Metode mengajar guru yang kurang menarik, sehingga siswa kurang termotivasi untuk belajar.
d. Siswa tidak paham konsep pengukuran.
e. Lingkungan belajar yang kurang mendukung.
2. Cara untuk memahamkan siswa yang lenah dalam mengkonversi satuan adalah dengan menggunakan metode demonstrasi. Sebelum menggunakan metode demonstrasi guru mengajak siswa untuk menghafalkan satuan panjang dengan menggunakan jembatan keledai. Metode demonstrasi bisa digunakan untuk menarik minat siswa dalam belajar pengukuran, serta dengan kondisi kelas yang mendukung maka diharapkan siswa dapat termotivasi untuk lebih giat belajar dan dapat menyelesaikan soal-soal terkait pengukuran.
B. Saran
Untuk meningkatkan keberhasilan siswa dalam pembelajaran matematika mengenai materi pengukuran, penulis memberi saran sebagai berikut:
1. Kepada siswa
Agar siswa dapat memahami dan mempelajari materi pengukuran dengan baik, sebaiknya siswa selalu memperhatikan materi apa yang disampaikan oleh guru dikelas. Sehingga siswa dapat cepat paham mengenai materi pengukuran ini khususnya dalam mengkonversi satuan.
2. Kepada guru
Guru sebaiknya mampu memilih metode pembelajaran yang tepat dalam menyampaikan suatu materi kepada siswa. Karena hal tersebut akan berpengaruh pada cepat lambatnya proses penyerapan materi oleh siswa. Oleh karena itu, guru harus panadai-pandai menyesuaikan metode pengajaran yang akan digunakan dalam kelas.
3. Kepada penulis
Untuk menambah pengalaman dan masukan bagi penulis lain. Serta menambah wawasan baik dalam bidang penulisan maupun dalam bidang materi.
REFERENSI
Abdurrahman, Mulyono. 2003. PENDIDIKAN BAGI ANAK KESULITAN BELAJAR. Jakarta : PT RINEKA CIPTA.
Ag, Moch. Masykur & Fathani, Abdul Halim. 2009. MATHEMATICAL INTELLIGENCE : Cara Cerdas Melatih Otak dan Menanggulangi Kesulitan Belajar. Yogyakarta : Ar-Ruzz Media.
Arifin, Anwar. 2003. Memahami Paradigma Baru Pendidikan Nasional,. Jakarta : Diterbitkan oleh Ditjen Kelembagaan Agama Islam Depag.
Depdiknas. 2003. Pedoman khusus pengembangan sistem penilaian berbasis kompetensi SMP. Jakarta: Depdiknas.
Fathani, Abdul Halim. 2012. MATEMATIKA:Hakikat & Logika. Yogyakarta : Ar-Ruzz Media.
Fitri, Agus Zaenul. 2013. Manajemen Kurikulum Pendidikan Islam. Bandung : Alfabeta
Gulo. 2002. Stategi belajar mengajar. Jakarta: Grafindo.
Hasbullah. 1999. Dasar-dasar Ilmu Pendidikan. Jakarta : PT RAJAGRAFINDO PERSADA.
Hasibuan, J.J. & Moedjiono. 2012. PROSES BELAJAR MENGAJAR. Bandung : PT. REMAJA ROSDAKARYA.
Junaedi, et. al. 2008. Diktat : Strategi Pembelajaran Edisi Pertama. Surabaya : LAPIS PGMI.
Mufarokah, Anisatul. 2009. Strategi Belajar Mengajar. Yogyakarta : Penerbit Teras.
Mulyasa. 2003. Kurikulum Berbasis Kompetensi. Bandung: Remaja Rosdakarya.
Musrikah. 2013. DIKTAT KPMSD (Kajian Pengembangan Matematika Sekolah Dasar). Stain Tulungagung.
NK, Roestiyah. 1991. Strategi Belajar Mengajar. Jakarta : Rineka Cipta.
Nunik Dita Agustin,. 2012. ” Penerapan metode demonstrasi dalam meningkatkan keaktifan dan prestasi belajar ipa peserta didik kelas IIIB madrasah ibtidaiyah wajib belajar hidayatut thullab kamulan durenan trenggalek”. Tulungagung
Padil, Moh. & Prastyo, Angga Teguh. 2011. Strategi pengelolaan SD/MI Visioner. Malang : UIN-MALIKI PRESS.
Pujiati. 2004. “Pengukuran” (disampaikan pada diklat instruktur/ pengembang matematika SD, Yogyakarta.
Purwanto, Ngalin. 1994. Prinsip-prinsip dan Teknik Evaluasi Pengajaran Pendidikan. Bandung : Remaja Rosdakarya.
Setyono, Ariesandi. 2005. Mathemagics. Jakarta : PT Gramedia Pustaka Utama.
Subini, Nini. 2011. Mengatasi Kesulitan Belajar Pada Anak. Yogyakarta : Javalitera.
Sugiyarti, Sri. 2009. Matematika untuk SD/MI Kelas 4. Jakarta : Pusat perbukuan, Departemen Pendidikan Nasional.
Suwarno. 2006. Pengajaran Mikro, Pendekatan Praktis Dalam Menyiapkan Pendidikan Profesional. Yogyakarta : Tiara Wacana.
Uno, Hamzah B. & Mohamad, Nurdin. 2012. Belajar Dengan Pendekatan PAILKEM : Pembelajaran Aktif, Inovatif, Lingkungan, Kreatif, Efektif, Menarik. Jakarta : PT. Bumi Aksara.
VanCleave, Janice. 2005. Matematika Untuk Anak. Bandung : Pakar Karya.
Dewi, Anisa Novita. tersedia di http://belajar.indonesiamengajar.org/2013/01/menghafal-tangga-satuan-panjang/ (diakses tanggal 11-11-2014)
Khairani, Siti. “Konversi Satuan Ukuran Berat, Panjang, Luas dan Isi”(On-Line), tersedia di http://mahasiswibaru.blogspot.com/2009/12/konversi-satuan-ukuran-berat-panjang.html (diakses tanggal 10-11-2014)
[1] Abdul Halim Fathani, MATEMATIKA:Hakikat & Logika, (Jogjakarta : Ar-Ruzz Media, 2012), hal. 21-22.
[2] Mulyono Abdurrahman, PENDIDIKAN BAGI ANAK KESULITAN BELAJAR, (Jakarta : PT RINEKA CIPTA, 2003) hal. 252.
[3] Moch. Masykur Ag & Abdul Halim Fathani, MATHEMATICAL INTELLIGENCE:Cara Cerdas Melatih Otak dan Menanggulangi Kesulitan Belajar (Jogyakarta : Ar-Ruzz Media, 2009) hal. 47-51
[4] Hasbullah, Dasar-dasar Ilmu Pendidikan, (Jakarta : PT RAJAGRAFINDO PERSADA, 1999) hal. 4-5
[5] Anwar Arifin, Memahami Paradigma Baru Pendidikan Nasional, ( Jakarta : Diterbitkan oleh Ditjen Kelembagaan Agama Islam Depag, 2003) hal 34
[6] Hasbullah, Dasar-dasar Ilmu…hal. 46-47
[7] Moch. Masykur Ag & Abdul Halim Fathani, MATHEMATICAL… hal. 41-42
[8] Anwar Arifin, Memahami Paradigma… hal 50
[9] Mulyono Abdurrahman, PENDIDIKAN BAGI… hal. 253.
[10] Ariesandi Setyono, Mathemagics (Jakarta : PT Gramedia Pustaka Utama, 2005) Hal 15
[11] J.J. Hasibuan & Moedjiono, PROSES BELAJAR MENGAJAR, (Bandung : PT. REMAJA ROSDAKARYA, 2012) hal. 29.
[12] Ariesandi setyono, Mathemagics… hal. 45
[13] Janice VanCleave, Matematika Untuk Anak ( Bandung : Pakar Karya, 2005) hal. 1.
[14] Mulyono Abdurrahman, PENDIDIKAN…hal. 252.
[15] Junaedi, et. al., Diktat : Strategi Pembelajaran Edisi Pertama, (Surabaya : LAPIS PGMI, 2008) hal. 11
[16] Moh. Padil dan Angga Teguh Prastyo, Strategi pengelolaan SD/MI Visioner, (Malang : UIN-MALIKI PRESS, 2011) hal. 50, 66-67.
[18] Mulyono Abdurrahman, PENDIDIKAN…hal. 253.
[19] Ibid…hal. 253
[20] Ibid…hal. 253-254
[21] Ngalin Purwanto, Prinsip-prinsip dan Teknik Evaluasi Pengajaran Pendidikan, (Bandung : Remaja Rosdakarya, 1994) hal 44.
[24] Depdiknas, Pedoman khusus pengembangan sistem penilaian berbasis kompetensi SMP, (Jakarta: Depdiknas, 2003), hal 18.
[26] Nini Subini, Mengatasi Kesulitan Belajar Pada Anak, (Yogyakarta : Javalitera, 2011) hal. 12-15
[27] Ibid. hal. 16-18
[28] Ibid. hal. 49-50
[29] Hamzah B. Uno dan Nurdin Mohamad, Belajar Dengan Pendekatan PAILKEM : Pembelajaran Aktif, Inovatif, Lingkungan, Kreatif, Efektif, Menarik, (Jakarta : PT. Bumi Aksara, 2012) hal. 7
[30] Nunik Dita Agustin,.” Penerapan metode demonstrasi dalam meningkatkan keaktifan dan prestasi belajar ipa peserta didik kelas IIIB madrasah ibtidaiyah wajib belajar hidayatut thullab kamulan durenan trenggalek” (Tulungaung. 2012), hal. 23
[31] Anisatul Mufarokah, Strategi Belajar Mengajar, ( Yogyakarta : Penerbit Teras, 2009), hal. 89.
[32] Roestiyah NK, Strategi Belajar Mengajar, (Jakarta : Rineka Cipta, 1991), hal.83
[33] Junaedi, et. al., Diktat : Strategi Pembelajaran …hal. 11
[34] Suwarno, Pengajaran Mikro, Pendekatan Praktis Dalam Menyiapkan Pendidikan Profesional, (Yogyakarta : Tiara Wacana, 2006), Hal. 112
[37] Musrikah, DIKTAT KPMSD (Kajian Pengembangan Matematika Sekolah Dasar), ( Stain Tulungagung, 2013) hal. 107
[38] Pujiati, “Pengukuran” (disampaikan pada diklat instruktur/ pengembang matemarika SD : Yogyakarta, 6-19 Agustus 2004)
[39] Sri Sugiyarti, Matematika unutk SD/MI Kelas 4, (Jakarta : Pusat perbukuan, Departemen Pendidikan Nasional, 2009) hal. 71
[40] Ibid…hal. 72
[41] Ibid…hal. 73
[42] Ibid…hal. 75
[43] Siti Khairani, “Konversi Satuan Ukuran Berat, Panjang, Luas dan Isi”(On-Line), tersedia di http://mahasiswibaru.blogspot.com/2009/12/konversi-satuan-ukuran-berat-panjang.html (diakses tanggal 10-11-2014)
[44] Ibid.
[45] Anisa Novita Dewi, tersedia di http://belajar.indonesiamengajar.org/2013/01/menghafal-tangga-satuan-panjang/ (diakses tanggal 11-11-2014)
[46] Ibid.